Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.15.383463

ABSTRACT

An unaddressed key question in the current coronavirus disease 2019 (COVID-19) pandemic is the duration of immunity for which specific T cell responses against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are an indispensable element. Being situated in Wuhan where the pandemic initiated enables us to conduct the longest analyses of memory T cell responses against SARS-CoV-2 in COVID-19 convalescent individuals (CIs). Magnitude and breadth of SARS-CoV-2 memory CD4 and CD8 T cell responses were heterogeneous between patients but robust responses could be detected up to 9 months post disease onset in most CIs. Loss of memory CD4 and CD8 T cell responses were observed in only 16.13% and 25.81% of CIs, respectively. Thus, the overall magnitude and breadth of memory CD4 and CD8 T cell responses were quite stable and not inversely correlated with the time from disease onset. Interestingly, the only significant decrease in the response was found for memory CD4 T cells in the first 6-month post COVID-19 disease onset. Longitudinal analyses revealed that the kinetics of SARS-CoV-2 memory CD4 and CD8 T cell responses were quite heterogenous between patients. Loss of memory CD4 T cell responses was observed more frequently in asymptomatic cases than after symptomatic COVID-19. Interestingly, the few CIs in which SARS-CoV-2-specific IgG responses disappeared showed more durable memory CD4 T cell responses than CIs who remained IgG-positive for month. Collectively, we provide the first comprehensive characterization of the long-term memory T cell response in CIs, suggesting that SARS-CoV-2-specific T cell immunity is long-lasting in the majority of individuals.


Subject(s)
Memory Disorders , Severe Acute Respiratory Syndrome , T-Lymphocytopenia, Idiopathic CD4-Positive , COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.14.382697

ABSTRACT

Background: Severe Acute Respiratory Syndrome (SARS) corona virus (SARS-CoV) infections are a serious public health threat because of their pandemic-causing potential. This work uses mRNA expression data to predict genes associated with SARS-CoV infection through an innovative meta-analysis examining gene signatures (i.e., gene lists ranked by differential gene expression between SARS and mock infection). Methods: This work defines 29 gene signatures representing SARS infection across seven strains with established mutations that vary virulence (infectious clone SARS (icSARS), Urbani, MA15, {Delta}ORF6, BAT-SRBD, {Delta}NSP16, and ExoNI) and host (human lung cultures and/or mouse lung samples) and examines them through Gene Set Enrichment Analysis (GSEA). To do this, first positive and negative icSARS gene panels were defined from GSEA-identified leading-edge genes between 500 genes from positive or negative tails of the GSE47960-derived icSARSvsmock signature and the GSE47961-derived icSARSvsmock signature, both from human cultures. GSEA then was used to assess enrichment and identify leading-edge icSARS panel genes in the other 27 signatures. Genes associated with SARS-CoV infection are predicted by examining membership in GSEA-identified leading-edges across signatures. Results: Significant enrichment (GSEA p<0.001) was observed between GSE47960-derived and GSE47961-derived signatures, and those leading-edges defined the positive (233 genes) and negative (114 genes) icSARS panels. Non-random (null distribution p<0.001) significant enrichment (p<0.001) was observed between icSARS panels and all verification icSARSvsmock signatures derived from human cultures, from which 51 over- and 22 under-expressed genes were shared across leading-edges with 10 over-expressed genes already being associated with icSARS infection. For the icSARSvsmock mouse signature, significant, non-random enrichment (both p<0.001) held for only the positive icSARS panel, from which nine genes were shared with icSARS infection in human cultures. Considering other SARS strains, significant (p<0.01), non-random (p<0.002) enrichment was observed across signatures derived from other SARS strains for the positive icSARS panel. Five positive icSARS panel genes, CXCL10, OAS3, OASL, IFIT3, and XAF1, were found in mice and human signatures. Conclusion: The GSEA-based meta-analysis approach used here identified genes with and without reported associations with SARS-CoV infections, highlighting this approachs predictability and usefulness in identifying genes that have potential as therapeutic targets to preclude or overcome SARS infections.


Subject(s)
Infections , Severe Acute Respiratory Syndrome
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.16.385468

ABSTRACT

Human coronaviruses (HCoVs) are mainly associated with respiratory infections. However, there is evidence that highly pathogenic HCoVs, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East Respiratory Syndrome (MERS-CoV), infect the gastrointestinal (GI) tract and are shed in the fecal matter of the infected individuals. These observations have raised questions regarding the possibility of fecal-oral route as well as foodborne transmission of SARS-CoV-2 and MERS-CoV. Studies regarding the survival of HCoVs on inanimate surfaces demonstrate that these viruses can remain infectious for hours to days, however, to date, there is no data regarding the viral survival on fresh produce, which is usually consumed raw or with minimal heat processing. To address this knowledge gap, we examined the persistence of HCoV-229E, as a surrogate for highly pathogenic HCoVs, on the surface of commonly consumed fresh produce, including: apples, tomatoes and cucumbers. Herein, we demonstrated that viral infectivity declines within a few hours post-inoculation (p.i) on apples and tomatoes, and no infectious virus was detected at 24h p.i, while the virus persists in infectious form for 72h p.i on cucumbers. The stability of viral RNA was examined by droplet-digital RT-PCR (ddRT-PCR), and it was observed that there is no considerable reduction in viral RNA within 72h p.i.


Subject(s)
Coronavirus Infections , Pulmonary Disease, Chronic Obstructive , Severe Acute Respiratory Syndrome , Respiratory Tract Infections , Gastrointestinal Diseases
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.21.20179358

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects millions of people and killed hundred-thousands of individuals. While acute and intermediate interactions between SARS-CoV-2 and the immune system have been studied extensively, long-term impacts on the cellular immune system remained to be analyzed. Here, we comprehensively characterized immunological changes in peripheral blood mononuclear cells in 49 COVID-19 convalescent individuals (CI) in comparison to 27 matched SARS-CoV-2 unexposed individuals (UI). Despite recovery from the disease for more than 2 months, CI showed significant decreases in frequencies of invariant NKT and NKT-like cells compared to UI. Concomitant with the decrease in NKT-like cells, an increase in the percentage of Annexin V and 7-AAD double positive NKT-like cells was detected, suggesting that the reduction in NKT-like cells results from cell death months after recovery. Significant increases in regulatory T cell frequencies, TIM-3 expression on CD4 and CD8 T cells, as well as PD-L1 expression on B cells were also observed in CI, while the cytotoxic potential of T cells and NKT-like cells, defined by GzmB expression, was significantly diminished. However, both CD4 and CD8 T cells of CI showed increased Ki67 expression and were fully capable to proliferate and produce effector cytokines upon TCR stimulation. Collectively, we provide the first comprehensive characterization of immune signatures in patients recovering from SARS-CoV-2 infection, suggesting that the cellular immune system of COVID-19 patients is still under a sustained influence even months after the recovery from disease.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.21.20159178

ABSTRACT

Long-term antibody responses and neutralizing activities following SARS-CoV-2 infections have not yet been elucidated. We quantified immunoglobulin M (IgM) and G (IgG) antibodies recognizing the SARS-CoV-2 receptor-binding domain (RBD) of the spike (S) or the nucleocapsid (N) protein, and neutralizing antibodies during a period of six months following COVID-19 disease onset in 349 symptomatic COVID-19 patients, which were among the first world-wide being infected. The positivity rate and magnitude of IgM-S and IgG-N responses increased rapidly. High levels of IgM-S/N and IgG-S/N at 2-3 weeks after disease onset were associated with virus control and IgG-S titers correlated closely with the capacity to neutralize SARS-CoV-2. While specific IgM-S/N became undetectable 12 weeks after disease onset in most patients, IgG-S/N titers showed an intermediate contraction phase, but stabilized at relatively high levels over the six months observation period. At late time points the positivity rates for binding and neutralizing SARS-CoV-2-specific antibodies was still over 70%. Taken together, our data indicate sustained humoral immunity in recovered patients who suffer from symptomatic COVID-19, suggesting prolonged immunity.


Subject(s)
COVID-19
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.28.20110767

ABSTRACT

The prevalence of asymptomatic SARS-CoV-2 infection in healthcare workers with intensive exposure to COVID-19 is unclear. In this study, we investigated the seroprevalence of SARS-CoV-2 in 797 asymptomatic healthcare workers with intensive exposure to COVID-19 patients in Wuhan, China. Positive IgG was detected from 35 asymptomatic healthcare workers, and the prevalence of antibodies to SARS-CoV-2 in asymptomatic healthcare workers was 4.39% (35/797). None of them developed COVID-19 until May 15. 33 of them have performed at least one chest CT scan showing no viral pneumonia features, and 16 have finished at least one-time SARS-CoV-2 RNA detection with negative results. When contacting with the patients, 15 of them dressed with full personal protective equipment (PPE), and 16 worn N95 mask and gown. To the best of our knowledge, this is the first investigation reported that the seroprevalence of SARS-CoV-2 was 4.39% in asymptomatic healthcare workers with applied PPE in a high epidemic area, which may provide useful information of estimating asymptomatic infection rate in general population.


Subject(s)
COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.06.20032342

ABSTRACT

Background: Severe patients with 2019 novel coronavirus (2019-nCoV) pneumonia progressed rapidly to acute respiratory failure. We aimed to evaluate the definite efficacy and safety of corticosteroid in the treatment of severe COVID-19 pneumonia. Methods: Forty-six hospitalized patients with severe COVID-19 pneumonia hospitalized at Wuhan Union Hospital from January 20 to February 25, 2020, were retrospectively reviewed. The patients were divided into two groups based on whether they received corticosteroid treatment. The clinical symptoms and chest computed tomography(CT) results were compared. Results: A total of 26 patients received intravenous administration of methylprednisolone with a dosage of 1-2mg/kg/d for 5-7 days, while the remaining patients not. There was no significant difference in age, sex, comorbidities, clinical or laboratory parameters between the two groups on admission. The average number of days for body temperature back to the normal range was significantly shorter in patients with administration of methylprednisolone when compared to those without administration of methylprednisolone (2.06 {+/-} 0.28 vs. 5.29 {+/-} 0.70, P=0.010). The patients with administration of methylprednisolone had a faster improvement of SpO2, while patients without administration of methylprednisolone had a significantly longer interval of using supplemental oxygen therapy (8.2days[IQR 7.0-10.3] vs. 13.5days(IQR 10.3-16); P<0.001). In terms of chest CT, the absorption degree of the focus was significantly better in patients with administration of methylprednisolone. Conclusion: Our data indicate that in patients with severe COVID-19 pneumonia, early, low-dose and short-term application of corticosteroid was associated with a faster improvement of clinical symptoms and absorption of lung focus.


Subject(s)
COVID-19 , Pneumonia , Respiratory Insufficiency
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.02.16.20023671

ABSTRACT

Background: The dynamic changes of lymphocyte subsets and cytokines profiles of patients with novel coronavirus disease (COVID-19) and their correlation with the disease severity remain unclear. Method: Peripheral blood samples were longitudinally collected from 40 confirmed COVID-19 patients and examined for lymphocyte subsets by flow cytometry and cytokine profiles by specific immunoassays. Findings: Of the 40 COVID-19 patients enrolled, 13 severe cases showed significant and sustained decreases in lymphocyte counts but increases in neutrophil counts than 27 mild cases. Further analysis demonstrated significant decreases in the counts of T cells, especially CD8 + T cells, as well as increases in IL-6, IL-10, IL-2 and IFN-{gamma} levels in the peripheral blood in the severe cases compared to those in the mild cases. T cell counts and cytokine levels in severe COVID-19 patients who survived the disease gradually recovered at later time points to levels that were comparable to those of the mild cases. Moreover, the neutrophil-to-CD8+ T cell ratio (N8R) were identified as the most powerful prognostic factor affecting the prognosis for severe COVID-19. Conclusion: The degree of lymphopenia and a proinflammatory cytokine storm is higher in severe COVID-19 patients than in mild cases, and is associated with the disease severity. N8R may serve as a useful prognostic factor for early identification of severe COVID-19 cases.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL